5

I am trying to compute $$\int_0^1 \left(\frac{1}{x} - \biggl\lfloor \frac{1}{x}\biggr\rfloor\right) dx$$ with no success. Any hints?

Daniel Fischer
  • 211,575

2 Answers2

4

$$\int_0^1 \left(\frac{1}{x} - \left\lfloor \frac{1}{x}\right\rfloor\right) dx=\lim_{k\to +\infty}\int_{\frac{1}{k}}^1 \left(\frac{1}{x} - \left\lfloor \frac{1}{x}\right\rfloor\right) dx$$

Now to compute the other integral use the decomposition: $$\int_{\frac{1}{k}}^1 \left(\frac{1}{x} - \left\lfloor \frac{1}{x}\right\rfloor\right) dx=\sum_{i=1}^{k-1} \int_{\frac{1}{i+1}}^{\frac{1}{i}}\left(\frac{1}{x} -i\right)dx=\sum_{i=1}^{k-1}\left[\ln(x)-ix\right]_{\frac{1}{i+1}}^{\frac{1}{i}}$$

and you can compute this sum and determine the limit, After computation you obtain:

$$\sum_{i=1}^{k-1}\left[\ln(x)-ix\right]_{\frac{1}{i+1}}^{\frac{1}{i}}=\ln(k)-\sum_{i=2}^{k}\frac{1}{i}$$

and this gives you:

$$\int_0^1 \left(\frac{1}{x} - \left\lfloor \frac{1}{x}\right\rfloor\right) dx=1-\gamma$$

with $\gamma$ denotes Euler–Mascheroni constant

Elaqqad
  • 13,983
0

Split it into a sum of integrals over intervals for which you know the value of the floor term. Note that this will be an infinite sum.

dalastboss
  • 1,288