This is one of the question I'm working on:
Suppose $A$ is a set, $F \subseteq \mathbb{P(A)}$, and $F \neq \emptyset$. Then prove that the greatest lower bound of $F$ (in the subset partial order) is $\cap F$.
Now this is my attempt at this problem:
We know that $\cap F$ is a lower bound of F since $\forall X \in F (\cap F \subseteq$ X). Now we need to prove that this is the greatest lower bound of $F$.
Now I'm stuck here. How to show that it is the greatest lower bound ?