The Sequence Converges Implies the Mean Converges
Suppose that
$$
\lim_{n\to\infty}a_n=L
$$
Then for any $\epsilon\gt0$, there is an $N$ so that if $n\ge N$, we have $|a_n-L|\le\epsilon$. Then
$$
\begin{align}
&\left|\,\lim_{M\to\infty}\frac1M\left(\sum_{n=1}^{N-1}a_n+\sum_{n=N}^Ma_n\right)-L\,\right|\\
&=\left|\,\lim_{M\to\infty}\frac1M\sum_{n=1}^{N-1}(a_n-L)+\lim_{M\to\infty}\frac1M\sum_{n=N}^M(a_n-L)\,\right|\\
&\le0+\lim_{M\to\infty}\frac{M-N+1}M\epsilon\\[9pt]
&=\epsilon
\end{align}
$$
Thus, the mean converges to the same limit.
Mean Converges Implies the Sequence Converges
We will prove the contrapositive. If $a_n$ does not converge, then the mean does not converge.
If $a_n$ is monotonic and bounded, then Monotone Convergence says $a_n$ converges. Thus, if $a_n$ does not converge, $a_n$ is not bounded.
Without loss of generality, suppose $a_n$ is increasing, but not bounded above. Then, for any $L$, there is an $N$ so that if $n\ge N$, we have $a_n\ge L$. This implies that
$$
\begin{align}
\lim_{M\to\infty}\frac1M\left(\sum_{n=1}^{N-1}a_n+\sum_{n=N}^Ma_n\right)
&\ge\lim_{M\to\infty}\frac1M\sum_{n=1}^{N-1}a_n+\lim_{M\to\infty}\frac{M-N+1}{M}L\\
&=L
\end{align}
$$
Thus, for any $L$ we have the mean is at least $L$.