Please help. I do not know what to do. You can just show the direction where to go and I continue. Here it is: $$\int\frac{dx}{(x^3-1)^2}$$
-
possible duplicate of Integration by partial fractions; how and why does it work? – Sep 21 '15 at 11:28
2 Answers
Hint: Rewrite your integrand as $$\frac 1{(x^3-1)^2}=\frac 1{(x-1)^2(x^2+x+1)^2}$$ and consider doing partial fractions on the latter.
- 13,952
-
-
@GFauxPas They seem fine to me. $$(x^3-1)^2=[(x-1)(x^2+x+1)]^2=(x-1)^2(x^2+x+1)^2$$ – Cookie Mar 29 '15 at 16:23
-
Let $$\displaystyle I = \int\frac{1}{(x^3-1)^2}dx = \frac{1}{3}\int\frac{1}{x^2}\cdot \frac{3x^2}{(x^3-1)^2}dx$$
Now Using Integration by parts, we get
$$\displaystyle I = - \frac{1}{3x^2}\cdot \frac{1}{(x^3-1)}-\frac{2}{3}\int \left[\frac{1}{x^3\cdot (x^3-1)}\right]dx$$
$$\displaystyle I = - \frac{1}{3x^2}\cdot \frac{1}{(x^3-1)}+\frac{2}{3}\int \left[\frac{1}{x^3}-\frac{1}{(x^3-1)}\right]dx$$
$$\displaystyle I = - \frac{1}{3x^2}\cdot \frac{1}{(x^3-1)}+\frac{2}{3}\int x^{-3}dx-\frac{2}{3}\int\frac{1}{(x-1)(x^2+x+1)}dx$$
$$\displaystyle I = - \frac{1}{3x^2}\cdot \frac{1}{(x^3-1)}-\frac{1}{3x^2}-\frac{2}{3}\int\frac{1}{(x-1)(x^2+x+1)}dx$$
Now Using partial fraction descomposition
$$\displaystyle \frac{1}{(x-1)(x^2+x+1)} = \frac{A}{x-1}+\frac{Bx+c}{x^2+x+1}$$
Now camparing Coefficients, we get
$$\displaystyle A=\frac{1}{3}\;, B=-\frac{1}{3}\;,C=-\frac{2}{3}$$
So $$\displaystyle \int\frac{1}{(x-1)(x^2+x+1)} = \frac{1}{3}\int\frac{1}{x-1}-\frac{1}{3}\int\frac{x+2}{x^2+x+1}dx$$
$$\displaystyle =\frac{1}{3}\int\frac{1}{x-1}-\frac{1}{6}\int\frac{2x+1}{x^2+x+1}-\frac{1}{2}\int\frac{1}{x^2+x+1}dx$$
$$\displaystyle = \frac{1}{3}\ln |x-1|-\frac{1}{6}\ln|x^2+x+1|-\frac{1}{2}\int\frac{1}{x^2+x+1}dx$$
- 56,203