$$\sum_{n=0}^{\infty}\frac{z^{kn}}{(kn)!}$$
Later edit: Is this correct?
$$e^{z\epsilon_p} = \sum_{n=0}^{\infty}\frac{z^n\epsilon_p^n}{n!}$$ $$\sum_{p=0}^{k-1}e^{z\epsilon_p} = \sum_{n=0}^{\infty}\frac{z^n}{n!}\sum_{p=0}^{k-1}\epsilon_p^n $$ $$\sum_{n=0}^{\infty}\frac{z^{kn}}{(kn)!} = \frac{\sum_{p=0}^{k-1}e^{\epsilon_p^nz}}{k} $$