I would like for some approval to my answer, please.
Show that $$\prod_2^\infty(1+\frac{(-1)^k}{\sqrt k})$$ diverges even though$$\sum_2^\infty \frac{(-1)^k}{\sqrt k}$$ converges.
$\prod_2^\infty(1+\frac{(-1)^k}{\sqrt k})$ diverges if and only if $\sum _2^\infty\log(1+\frac{(-1)^k}{\sqrt k})$ diverges.
Indeed, by Leibnitz' converges test $$\sum_2^\infty \frac{(-1)^k}{\sqrt k}$$ converges. Thus, $\sum _2^\infty\log(1+\frac{(-1)^k}{\sqrt k})$ diverges if and only if $\sum _2^\infty(\log(1+\frac{(-1)^k}{\sqrt k})+\frac{(-1)^k}{\sqrt k})$ diverges.
We observe that for all $k\geq 2$,
$$
|\log(1+\frac{(-1)^k)}{\sqrt k})-\frac{(-1)^k)}{\sqrt k}|\\
=|\frac{(-1)^{2k}}{2\sqrt k^2}- \frac{(-1)^{3k}}{3\sqrt k^3} + \frac{(-1)^{4k}}{4\sqrt k^4} -\frac{(-1)^{5k}}{5\sqrt k^5}+-...|
$$
But since we know that the last series is convergent (to $|\log(1+\frac{(-1)^k)}{\sqrt k})-\frac{(-1)^k}{\sqrt k}|$), then it is equal to
$$
=|(\frac{(-1)^{2k}}{2\sqrt k^2}- \frac{(-1)^{3k}}{3\sqrt k^3}) + (\frac{(-1)^{4k}}{4\sqrt k^4} -\frac{(-1)^{5k}}{5\sqrt k^5})+-...|=:A
$$
but every addend in this series is positive because for all $l\in\mathbb{N}$:
$$
(-1)^{2l}(2l+1)\sqrt k^{2l+1}>(-1)^{2l+1}\cdot 2l\cdot\sqrt k^{2l}
$$
($\sqrt k>1$).
Thus, the previous series $A$ obtains:
$$
A=(\frac{(-1)^{2k}}{2\sqrt k^2}- \frac{(-1)^{3k}}{3\sqrt k^3}) + (\frac{(-1)^{4k}}{4\sqrt k^4} -\frac{(-1)^{5k}}{5\sqrt k^5})+-...
\\ >\frac{(-1)^{2k}}{2\sqrt k^2}- \frac{(-1)^{3k}}{3\sqrt k^3}\geq \frac{1}{2k}-\frac{1}{3k^{1.5}}
$$
But because $\sum \frac{1}{2k}$ diverges and $\sum\frac{1}{3k^{1.5}}$ converges then $\sum(\frac{1}{2k}-\frac{1}{3k^{1.5}})$ diverges then $A$ diverges.