Prove that for all $a\in \mathbb{Z}$, following holds $$a^{145}\equiv a\ \ \ (\text{mod }133)$$
I could use some hints on how to approach this problem.
Prove that for all $a\in \mathbb{Z}$, following holds $$a^{145}\equiv a\ \ \ (\text{mod }133)$$
I could use some hints on how to approach this problem.
$133=19\cdot7$
For any prime $p$ either $p|a$ or $p\nmid a\iff(p,a)=1$
For $19,$ either $19|a\implies19|(a^{145}-a)$
or $(a,19)=1$ By Fermat's Little Theorem, $a^{19-1}\equiv1\pmod{19}$
$a^{145}-a=a[(a^{18})^8-1]\equiv0\pmod{19}$
Similarly for $7$
Finally lcm$(19,7)$ divides $(a^{145}-a)$
In fact, using Carmichael function $\lambda(133)=18,$
we can prove $a^{18n+1}\equiv a\pmod{133}$ where integer $n\ge0$
Hint $\ $ Appply the following slight generalization of $\color{#c00}{\rm Fermat's}$ little Theorem: for $\,p=7,19$
Remark $\ $ Above we used basic congruence rules. The key idea generalizes, see Korselt's Carmichael Number Criterion.