Case $1$: Assume $x+y>0$
Write $e^{x+y}={\displaystyle \lim_{n \to \infty} \left( 1 + \frac{(x+y)}{n} \right)^{n}}$ and substitute $\frac1m=\frac{x+y}{n}$.
$$e^{x+y}={\displaystyle \lim_{n \to \infty} \left( 1 + \frac{(x+y)}{n} \right)^{n}}={\displaystyle \lim_{m \to \infty} \left( 1 + \frac{1}{m} \right)^{m(x+y)}}=\left({\displaystyle \lim_{m \to \infty} \left( 1 + \frac{1}{m} \right)^{m}}\right)^{x+y}=e^xe^y$$
which completes the proof for Case 1, $x+y>0$.
Case $2$: $x+y=0$. This case for is trivial.
Case $3$: $x+y<0$
When $x+y<0$, we begin by making the substitution $\frac{1}{m} = -\frac{x+y}{n}$. We proceed analogously thereafter by making use of the identity
$$e^{-1}=\lim_{n \to \infty} \left(1-\frac{1}{n}\right)^n$$