1

Let $f: R^n\to R\cup\{\infty\}$ to be a convex function. Let $f_{\epsilon}(x)=\frac{|x|^2}{2\epsilon}$. Show that:

$$\lim_{\epsilon\to 0}\inf_{x=y+z}f_{\epsilon}(y)+f(z) =f(x)$$

The $\leq$ part is trivial. But how to prove the other part?

Kira Yamato
  • 1,364

0 Answers0