A simple proof that uses Gauß's lemma. The binomial coefficients satisfy this recursion formula, for $0<k<n$:
$$\binom nk=\frac nk\binom{n-1}{k-1}$$
If $n$ is prime, $k$ is coprime with $n$, hence it divides $\dbinom{n-1}{k-1}$. This proves $\dbinom nk=n\times\text{some factor}$.
For the second question, if I've well understood it, $\dbinom nk$ is prime if and only if $n$ is prime and $k=1$ or $n-1$.
Indeed, note first $\dbinom nk=1$ if $k=0,n$ and $\dbinom nk=n$ if $k=1,n-1$. Secondly, if $2\le k\le n-2$, the relation above is a non-trivial factorisation of $\dbinom nk$, whence the assertion.