Let $u(x,t)=\sum\limits_{n=0}^\infty A(n,t)\sin\dfrac{(2n+1)\pi\ln x}{2}$ so that it automatically satisfies $u(1,t)=0$ and $u_x(e,t)=0$ ,
Then $\sum\limits_{n=0}^\infty\dfrac{\partial A(n,t)}{\partial t}\sin\dfrac{(2n+1)\pi\ln x}{2}-x\sum\limits_{n=0}^\infty\dfrac{(2n+1)\pi A(n,t)}{2x}\cos\dfrac{(2n+1)\pi\ln x}{2}-x^2\left(-\sum\limits_{n=0}^\infty\dfrac{(2n+1)^2\pi^2A(n,t)}{4x^2}\sin\dfrac{(2n+1)\pi\ln x}{2}-\sum\limits_{n=0}^\infty\dfrac{(2n+1)\pi A(n,t)}{2x^2}\cos\dfrac{(2n+1)\pi\ln x}{2}\right)=\ln x$
$\sum\limits_{n=0}^\infty\dfrac{\partial A(n,t)}{\partial t}\sin\dfrac{(2n+1)\pi\ln x}{2}-\sum\limits_{n=0}^\infty\dfrac{(2n+1)\pi A(n,t)}{2}\cos\dfrac{(2n+1)\pi\ln x}{2}+\sum\limits_{n=0}^\infty\dfrac{(2n+1)^2\pi^2A(n,t)}{4}\sin\dfrac{(2n+1)\pi\ln x}{2}+\sum\limits_{n=0}^\infty\dfrac{(2n+1)\pi A(n,t)}{2}\cos\dfrac{(2n+1)\pi\ln x}{2}=\ln x$
$\sum\limits_{n=0}^\infty\left(\dfrac{\partial A(n,t)}{\partial t}+\dfrac{(2n+1)^2\pi^2A(n,t)}{4}\right)\sin\dfrac{(2n+1)\pi\ln x}{2}=\ln x$
$\sum\limits_{n=0}^\infty\left(\dfrac{\partial A(n,t)}{\partial t}+\dfrac{(2n+1)^2\pi^2A(n,t)}{4}\right)\sin\dfrac{(2n+1)\pi y}{2}=y$
For $0<y<1$ , i.e. $1<x<e$ , with reference to Wave equation with initial and boundary conditions - is this function right? ,
$\sum\limits_{n=0}^\infty\left(\dfrac{\partial A(n,t)}{\partial t}+\dfrac{(2n+1)^2\pi^2A(n,t)}{4}\right)\sin\dfrac{(2n+1)\pi y}{2}=\sum\limits_{n=0}^\infty2\int_0^1y\sin\dfrac{(2n+1)\pi y}{2}dy~\sin\dfrac{(2n+1)\pi y}{2}$
$\sum\limits_{n=0}^\infty\left(\dfrac{\partial A(n,t)}{\partial t}+\dfrac{(2n+1)^2\pi^2A(n,t)}{4}\right)\sin\dfrac{(2n+1)\pi y}{2}=-\sum\limits_{n=0}^\infty\dfrac{8(-1)^n}{(2n+1)^2\pi^2}\sin\dfrac{(2n+1)\pi y}{2}$
$\therefore\dfrac{\partial A(n,t)}{\partial t}+\dfrac{(2n+1)^2\pi^2A(n,t)}{4}=-\dfrac{8(-1)^n}{(2n+1)^2\pi^2}$
$\dfrac{\partial}{\partial t}\left(e^\frac{(2n+1)^2\pi^2t}{4}A(n,t)\right)=-\dfrac{8(-1)^ne^\frac{(2n+1)^2\pi^2t}{4}}{(2n+1)^2\pi^2}$
$e^\frac{(2n+1)^2\pi^2t}{4}A(n,t)=C(n)-\dfrac{32(-1)^ne^\frac{(2n+1)^2\pi^2t}{4}}{(2n+1)^4\pi^4}$
$A(n,t)=C(n)e^{-\frac{(2n+1)^2\pi^2t}{4}}-\dfrac{32(-1)^n}{(2n+1)^4\pi^4}$
$\therefore u(x,t)=\sum\limits_{n=0}^\infty C(n)e^{-\frac{(2n+1)^2\pi^2t}{4}}\sin\dfrac{(2n+1)\pi\ln x}{2}-\sum\limits_{n=0}^\infty\dfrac{32(-1)^n}{(2n+1)^4\pi^4}\sin\dfrac{(2n+1)\pi\ln x}{2}$
$u(x,0)=\sin\dfrac{\pi\ln x}{2}$ :
$\sum\limits_{n=0}^\infty C(n)\sin\dfrac{(2n+1)\pi\ln x}{2}-\sum\limits_{n=0}^\infty\dfrac{32(-1)^n}{(2n+1)^4\pi^4}\sin\dfrac{(2n+1)\pi\ln x}{2}=\sin\dfrac{\pi\ln x}{2}$
$C(n)-\dfrac{32(-1)^n}{(2n+1)^4\pi^4}=\begin{cases}1&\text{when}~n=0\\0&\text{otherwise}\end{cases}$
$C(n)=\begin{cases}\dfrac{32}{(2n+1)^4\pi^4}+1&\text{when}~n=0\\\dfrac{32(-1)^n}{(2n+1)^4\pi^4}&\text{otherwise}\end{cases}$
$\therefore u(x,t)=e^{-\frac{\pi^2t}{4}}\sin\dfrac{\pi\ln x}{2}+\sum\limits_{n=0}^\infty\dfrac{32(-1)^n}{(2n+1)^4\pi^4}\left(e^{-\frac{(2n+1)^2\pi^2t}{4}}-1\right)\sin\dfrac{(2n+1)\pi\ln x}{2}$