I couldn't find anything to use apart from the fundamental theorem of arithmetic.
Here is my proof :
Let $a,b \in N$
Suppose $a^5 | b^5$
Let $S = \{ \text{ n is prime } , n | a \lor n | b \} $
$ P_i \in S, \alpha_i\ge0, a=P_1^{\alpha_1}.P_2^{\alpha_2}...P_k^{\alpha_k} \rightarrow a^5=P_1^{5\alpha_1}.P_2^{5\alpha_2}...P_k^{5\alpha_k} $
$P_i \in S,\beta_i\ge0, b=P_1^{\beta_1}.P_2^{\beta_2}...P_k^{\beta_k} \rightarrow b^5=P_1^{5\beta_1}.P_2^{5\beta_2}...P_k^{5\beta_k} $
$\frac{b^5}{a^5} = P_1^{5\beta_1-5\alpha_1}.P_2^{5\beta_2-5\alpha_2}...P_k^{5\beta_k-5\alpha_k} $
$a^5 | b^5 \rightarrow \frac{b^5}{a^5} \in N \rightarrow 5\beta_1-5\alpha_1 \ge 0 \rightarrow 5\beta_1 \ge 5\alpha_1 \rightarrow \beta_1 \ge \alpha_1 $
$ \frac{b}{a} = P_1^{\beta_1-\alpha_1}.P_2^{\beta_2-\alpha_2}...P_k^{\beta_k-\alpha_k} $
$ \beta_1 \ge \alpha_1 \rightarrow \frac ab \in N \rightarrow a|b $
Is the proof correct ?