Trying to prove this congruence: $$ \frac{34\times 10^{(6n-1)}-43}{99} \equiv-1~\text{ or }~5 \pmod 6,\quad n\in\mathbb{N}$$
Progress
Brought it to the form $$34\times 10^{6n-1}-43\equiv -99\pmod{6\cdot 99}$$ but how to proceed further? $6\cdot 99$ is not a small number.