This is a conversion someone on SE made:
$$77777\equiv1\pmod{4}\implies77777^{77777}\equiv77777^1\equiv7\pmod{10}$$
But I don't understand how this is done?
This is a conversion someone on SE made:
$$77777\equiv1\pmod{4}\implies77777^{77777}\equiv77777^1\equiv7\pmod{10}$$
But I don't understand how this is done?
What was actually used is Euler's theorem: $$a^{\varphi(n)} \equiv 1 \pmod n$$ Where $\varphi$ is the totient function. $\varphi(10) = 4$ so $$77777^{a + 4k} \equiv 77777^a \pmod{10}\\ \Rightarrow 77777^{77777} \equiv 77777^{77777 \bmod 4} = 77777^1 \pmod{10}$$
Hint: $7^2\equiv -1\pmod{10}$.
No base change actually happens.
Let $$77777 = 1 + 4k \rightarrow k = 19444$$
$$77777 \equiv 77777^{77777} \equiv 7$$ Then?
– Lebes Feb 19 '15 at 10:18