Find Largest Integer values of $a$ for which $\displaystyle \lim_{x\rightarrow 1}\Bigg(\frac{-ax+\sin (x-1)+a}{x+\sin (x-1)-1}\Bigg)^{\frac{1-x}{1-\sqrt{x}}} = \frac{1}{4}\;,$ is
$\bf{My\; Solution::}$ We can write the above Limit as $\displaystyle \lim_{x\rightarrow 1}\Bigg(\frac{-a(x-1)+\sin(x-1)}{(x-1)+\sin(x-1)}\Bigg)^{1+\sqrt{x}} = \frac{1}{4}$
So $\displaystyle \lim_{x\rightarrow 1}\Bigg(\frac{-a+\frac{\sin(x-1)}{x-1}}{1+\frac{\sin (x-1)}{x-1}}\Bigg)^2 = \frac{1}{4}\Rightarrow \bigg(\frac{-a+1}{2}\bigg)^2 = \bigg(\frac{1}{2}\bigg)^2$
So We get $\displaystyle (-a+1) = \pm 1\Rightarrow a = 0$ or $a=2$
But answer given as $a = 0$ and I did not understand why it can not be $a = 2$
Please explain the reasoning behind it, Thanks