Show that $\operatorname{Hom}_{\mathbb{Z}}\left ( \mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z} \right )\cong \mathbb{Z}/\left ( n,m \right )\mathbb{Z}$
I think that the hom-set (of $\mathbb{Z}$ module homomorphisms ) is isomorphic to $\left \{ a\in \mathbb{Z}/m\mathbb{Z},na=m\mathbb{Z} \right \}=\left \{ k+m\mathbb{Z} \right \}$ where $m\mid (nk)$ but I can't show that it's isomorphic to $\mathbb{Z}/\left ( n,m \right )\mathbb{Z}$