Consider this space, where open circles denote missing endpoints:

Hatcher (p57) says that "every covering space of $S^1\vee S^1$ is a [2-oriented] graph." The above space is not a graph since the endpoints are missing.
But it looks to me like a covering space for $S^1\vee S^1$ under the projections $(x,0)\mapsto C_L(x)$ and $(0,y)\mapsto C_R(y)$, where $C_L(\theta)$ is the point at angle $\theta$ on the left circle. (We define the wedge point as $\theta=0$.)
Is it truly a covering space?