Here’s how you can show irreducibility of your polynomial, using the same method I used in the argument I gave in the reference that @BillDubuque mentioned:
First form $x^3-5$, the minimal polynomial for $\root3\of5$ over $\Bbb Q$. Now think of it as a polynomial over the principal ideal domain $\Bbb Z[\sqrt2\,]$. It happens that $5$ is still prime there, so Eisenstein still applies, and this is the minimal polynomial for $\root3\of5$ over the extension. Consequently $(x-\sqrt2)^3-5$ is still irreducible over $\Bbb Z[\sqrt2\,]$, and it’s the minimal polynomial for $\sqrt2+\root3\of5$. Let’s call this polynomial $f(x)$. It’s actually $x^3-3\sqrt2x^2+6x-5+2\sqrt2$. Now take the conjugate polynomial, call it $\bar f$, which you get by replacing $\sqrt2$ by $-\sqrt2$ in $f$ wherever it appears. Finally, multiply, and get $f\bar f$, which turns out to be exactly the sextic polynomial you calculated.
This clearly is a $\Bbb Q$-polynomial that has $\sqrt2+\root3\of5$ as a root. But it is also a $\Bbb Z[\sqrt2\,]$-polynomial, and we know its factorization into irreducibles there, namely $f\bar f$. And by uniqueness of factorization there, this is the only possible factorization with coefficients in $\Bbb Z[\sqrt2\,]$. But a $\Bbb Q$-factorization of your polynomial would also be a $\Bbb Z[\sqrt2\,]$-factorization, and we already have one such, and it’s unique. So there is no factorization of your polynomial over $\Bbb Z$ or $\Bbb Q$.