This is my question : Let G be a group without subgroups with index 2 (i.ee. there is no subgroup M s.t $[G:M]=2$).prove that every group $H<G$ s.t $[G:H]=3$ is normal in G.
What I thought to do: Let N be a subgroup s.t $[G:H]=3$ so $G/H={N,xN,yN}$ so every $g \in G$ is of the form : $g=n,g=xn,g=yn$ when $n \in \mathbb N$. I tried to prove that for every $g \in G$ : $gNg^{-1} =N$ but without a success.
$A_5$ contains no subgroup index $2$ and $3$, but a subgroup of index $5$ (namely $A_4$), that is not normal.
– MooS Feb 02 '15 at 14:25