The axiom of Replacement Scheme implies separate axiom. I can not show this lemma. Does someone have any idea about it?
Asked
Active
Viewed 76 times
0
-
http://math.stackexchange.com/q/421202/462 – Andrés E. Caicedo Jan 13 '15 at 16:35
-
Also, http://en.wikipedia.org/wiki/Axiom_schema_of_specification#Relation_to_the_axiom_schema_of_replacement. – Martín-Blas Pérez Pinilla Jan 13 '15 at 16:37
1 Answers
0
Let $P$ be a property of sets and let $a$ be a set.
If $c\in a$ then prescribe $F$ as an operation on sets by $x\mapsto x$ if $P\left(x\right)$ and $x\mapsto c$ otherwise.
Then $b:=\left\{ F\left(x\right)\mid x\in a\right\} $ satisfies $\forall x\left[x\in b\iff\left[x\in a\wedge P\left(x\right)\right]\right]$.
In special case $a=\emptyset$ you can do it with $b:=a=\emptyset$.
drhab
- 153,781