0

The axiom of Replacement Scheme implies separate axiom. I can not show this lemma. Does someone have any idea about it?

1 Answers1

0

Let $P$ be a property of sets and let $a$ be a set.

If $c\in a$ then prescribe $F$ as an operation on sets by $x\mapsto x$ if $P\left(x\right)$ and $x\mapsto c$ otherwise.

Then $b:=\left\{ F\left(x\right)\mid x\in a\right\} $ satisfies $\forall x\left[x\in b\iff\left[x\in a\wedge P\left(x\right)\right]\right]$.

In special case $a=\emptyset$ you can do it with $b:=a=\emptyset$.

drhab
  • 153,781