how to turn $ \large \int \sqrt {\frac{x}{x+1}} dx$ into a rational fraction? is this even possible?
I mean turning $\sqrt {\frac{x}{x+1}}$ into such a fraction...
how to turn $ \large \int \sqrt {\frac{x}{x+1}} dx$ into a rational fraction? is this even possible?
I mean turning $\sqrt {\frac{x}{x+1}}$ into such a fraction...
Hint: The obvious substitution is $\sqrt{\frac{x}{x+1}}=u$. Solving for $x$,
$$\sqrt{\frac{x}{x+1}}=u\\ \frac{x}{x+1}=u^2\\ x=u^2(x+1)=u^2x+u^2\\ (1-u^2)x=u^2\\ x=\frac{u^2}{1-u^2}.$$
Taking differentials of both sides,
$$\mathrm{d}x=\frac{2u}{(1-u^2)^2}\,\mathrm{d}u.$$
Now, the integral becomes:
$$\begin{align} \int\sqrt{\frac{x}{x+1}}\,\mathrm{d}x &=\int u\cdot \frac{2u}{(1-u^2)^2}\,\mathrm{d}u\\ &=2\int\frac{u^2}{(1-u^2)^2}\,\mathrm{d}u,\\ \end{align}$$
which is of course a rational integral.
Let $t^2=x+1$, then: $$I=\int\frac{\sqrt{t^2-1}}{t}\cdot2t{\rm d}t=2\int\sqrt{t^2-1}{\rm d}t=t\sqrt{t^2-1}-\ln|t+\sqrt{t^2-1}|+c\\=x\sqrt{x+1}-\ln|x+\sqrt{1+x}|+c$$
Let: $$x=\tan^2\theta\\I=\int\frac{\tan\theta\cdot2\tan\theta\sec^2\theta\rm d\theta}{\sec\theta}=2\int\tan^2\theta\sec\theta{\rm d}\theta=2\left(\int\sec^3\theta{\rm d}\theta-\int\sec\theta{\rm d}\theta\right)\\=\sec\theta\tan\theta+\ln|\sec\theta+\tan\theta|-2\ln|\sec\theta+\tan\theta|+c=x\sqrt{1+x}-\ln|x+\sqrt{1+x}|+c$$