Since you cannot use complex numbers, double integrals, or Laplace transforms, here is a method that comes to mind. After showing that the improper integral exists, let $A = \int_0^\infty \frac{\sin x}{x}\, dx$. Then $$A = \lim_{n\to \infty} \int_0^{(2n+1)\frac{\pi}{2}} \frac{\sin x}{x}\, dx = \lim_{n\to \infty} \int_0^\pi \frac{\sin \frac{(2n+1)}{2}x}{x}\, dx = \lim_{n\to \infty} \int_0^\pi f(x)g_n(x)\, dx,$$
where $f(x) = \frac{\sin x/2}{x/2}$ and $g_n(x) = \frac{\sin (2n+1)x/2}{2\sin x/2}$. Since $$g_n(x) = \frac{1}{2} + \sum_{k = 1}^n \cos kx$$ for $0 < x < \pi$, we have $$\int_0^\pi g_n(x)\, dx = \frac{\pi}{2}.$$ Therefore
$$\int_0^\pi f(x)g_n(x)\, dx = \frac{\pi}{2} + \int_0^\pi h(x)\sin \frac{(2n+1)x}{2}\, dx,$$
where $h(x) = (f(x) - 1)/(2\sin x/2)$. Not only is $h$ continuous on $(0,\pi)$, but $h$ also has a right-hand limit at $0$. Indeed, $$\lim_{x \to 0^+} h(x) = \lim_{x\to 0^+} \frac{f(x) - 1}{x} \lim_{x\to 0^+} \frac{x/2}{\sin x/2} = \lim_{x\to 0^+} \frac{f(x) - 1}{x} = \lim_{x\to 0^+} \frac{2\sin \frac{x}{2} - x}{x^2},$$ and
$$\lim_{x\to 0^+} \frac{2\sin \frac{x}{2} - x}{x^2} = \lim_{x\to 0^+} \frac{O(x^3)}{x^2} = \lim_{x\to 0^+} O(x) = 0.$$ Thus $h(x)$ is piecewise continuous on $(0,\pi)$. Hence, by the Riemann-Lebesgue lemma, $\lim_{n\to \infty} \int_0^\pi h(x)\sin \frac{(2n+1)x}{2}\, dx = 0$. Now we deduce $$\lim_{n\to \infty} \int_0^\pi f(x)g_n(x)\, dx = \frac{\pi}{2},$$ in other words, $A = \frac{\pi}{2}$.