let $a_{i},i=1,2,\cdots,n$ be postive integer ,show that $$1^{n-1}2^{n-2}\cdots (n-2)^2(n-1)|\prod_{1\le i<j\le n}(a_{i}-a_{j})$$
I know this $\prod_{1\le i<j\le n}(a_{i}-a_{j})$ is Vandermonde determinants,and I found $$1^{n-1}2^{n-2}\cdots (n-2)^2\cdot (n-1)=1!2!3!\cdots (n-1)!=\prod_{1\le i<j\le n}(j-i)$$ we only prove $$\prod_{1\le i<j\le n}\dfrac{a_{j}-a_{i}}{j-i}$$ is integer
maybe consider Vandermonde determinants ? But I can't prove this