7

How to evaluate residue of $\cot z/z^4$ at $z=0$? As we know : $$f(x)=f(0)+f'(0)x+f''(0)x^2/2+...$$ but $\cot(0)\to\infty$ or is undefined? I know that: $$\tan x=x+x^3/3+2x^5/15+...$$

RE60K
  • 18,045
  • answer is -1/45 – RE60K Dec 25 '14 at 07:02
  • 2
    Hint Since $\cot z=\cos z/\sin z$, and since $\sin z$ has a simple zero at $0$, we know $z^{-4}\cot z$ has a pole of order $5$ at $0$. There's a formula to evaluate residues at poles. What you want is a Laurent series, not a Taylor series, and to look at the coefficient of $z^{-1}$. – Pedro Dec 25 '14 at 07:03
  • 2
    Another approach is to use Bernoulli numbers, but of course this is begging the question, in some sense. Recall (?) that $$\cot z=\frac 1 z+\sum_{\nu\geqslant 0}(-1)^{\nu}\frac{2^{2\nu} B_{2\nu}}{(2\nu)!}z^{2\nu-1}$$ You can derive this from the more familiar $\frac{z}{e^z-1}=\sum_{\nu\geqslant 0}B_\nu\frac{z^{\nu}}{\nu!}$. – Pedro Dec 25 '14 at 07:12
  • @PedroTamaroff i know none of B-numbers neither i am familiar with both the formulae you provided; sorry :( – RE60K Dec 25 '14 at 07:17

3 Answers3

5

The function has a pole of order $5$ at zero, so it isn't defined there.

Following @PedroTamaroff's hint and using that $\lim_{z\to 0}\frac{\sin z}{z} = 1$ : $$ \frac{\cot z}{z^4} = \frac{\cos z}{z^4\sin z}= \frac{z\cos z}{\sin z}\frac{1}{z^5} $$ Observe that the first fraction is holomorphic in a neighbourhood of $0$. Use Cauchy's theorem to finish.

hjhjhj57
  • 4,211
4

Well,

\begin{align}\cot z = \frac{\cos z}{\sin z} &= \frac{1 - \frac{z^2}{2!} + \frac{z^4}{4!} + O(z^6)}{z - \frac{z^3}{3!} + \frac{z^5}{5!} + O(z^7)}\\ & = \frac{1}{z}\cdot \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} + O(z^6)\right)\cdot \left(1 + \frac{z^2}{3!} - \frac{z^4}{5!} +\frac{z^4}{3!3!}+ O(z^6)\right)\\ &= \frac{1}{z}\cdot \left(1 + \left(-\frac{1}{2!} + \frac{1}{3!}\right)z^2 + \left(-\frac{1}{2!3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{3!3!}\right)z^4 + O(z^6)\right).\end{align}

Therefore, the coefficient of $\frac{1}{z}$ in the Laurent expansion of $\frac{\cot(z)}{z^4}$ is

$$-\frac{1}{2!3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{3!3!} = -\frac{1}{45}.$$

Hence, $$\text{Res}_{z = 0}\frac{\cot(z)}{z^4} = -\frac{1}{45}.$$

kobe
  • 43,217
  • How is the coefficient of $1/z = -1/45$? – Amad27 Jan 12 '15 at 10:03
  • @Amad27 what do you mean? – kobe Jan 12 '15 at 15:36
  • I meant how do you derive that the coefficient of the $1/z$ term is $-1/45$? As you say above in the answer? – Amad27 Jan 12 '15 at 15:37
  • 1
    Look at the last line (line 3) for the expansion of $\cot z$. If you divide through by $z^4$, you find that $$\frac{\cot z}{z^4} = \cdots + \left(-\frac{1}{2!3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{3!3!}\right)\frac{1}{z} + O(z).$$ So the coefficient of $\frac{1}{z}$ is $$-\frac{1}{2!3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{3!3!} = -\frac{1}{45}.$$ – kobe Jan 12 '15 at 15:52
  • Fantastic, this deserves much more than $(+1)$ – Amad27 Jan 12 '15 at 15:58
  • 2
    @kobe How did you arrive at your second equality from the first one? I'm talking about the second factor, which seems to refer to the denominator. – Mussé Redi Jan 19 '17 at 09:35
  • 1
    @MusséRedi using $\frac{1}{1-x} = 1 + x + x^2 + \cdots$. – kobe Jan 19 '17 at 14:49
  • @kobe What is $x$ is in this case? – Mussé Redi Jan 19 '17 at 14:53
  • 1
    @MusséRedi $x = \frac{z^2}{3!} - \frac{z^4}{5!} + O(z^6)$. – kobe Jan 19 '17 at 15:03
  • @kobe I guess that's a valid approach since $|z|<1$. – Mussé Redi Jan 19 '17 at 15:10
  • at the third equality, the coefficient of $z^2$ should be $(-\frac{1}{2!} + \frac{1}{3!})$,shouldn’t it? – glimpser Jan 30 '20 at 10:17
  • @glimpser yes, I had evaluated $3! = 6$, but accidentally left the factorial symbol next to $6$. Thanks for the comment. – kobe Jan 30 '20 at 16:08
0

$$\frac{\cos z}{z^4\sin z}$$

$$\newcommand{\f}[2]{\frac{#1}{#2}} \newcommand{\r}[1]{\frac{1}{#1}} \newcommand{\array}[2]{\begin{array}{#1}#2\end{array}} \newcommand{\b}[1]{\left(#1\right)} \newcommand{\s}[1]{\left[#1\right]} \newcommand{\d}[0]{\ldots} \newcommand{\ul}[1]{\underline{#1}} \array{r|lll}{ &&\r{z^5}&-\b{\r{3!}-\r{2!}}\r{z^3}&+\s{\b{\r{4!}-\r{5!}}+\r{3!}\b{\r{3!}-\r{2!}}}\r{z}&+\d\\\hline z^5-\f{z^7}{3!}+\f{z^9}{5!}+\d&&1&-\f{z^2}{2!}&+\f{z^4}{4!}&+\d\\ &&1&-\f{z^2}{3!}&+\f{z^4}{5!}&+\d\\\hline &&&\b{\r{3!}-\r{2!}}z^2&+\b{\r{4!}-\r{5!}}z^4&+\d\\ &&&\b{\r{3!}-\r{2!}}z^2&+\r{3!}\b{\r{3!}-\r{2!}}z^4&+\d\\\hline &&&&\s{\b{\r{4!}-\r{5!}}+\r{3!}\b{\r{3!}-\r{2!}}}z^4&+\d\\ &&&&\s{\b{\r{4!}-\r{5!}}+\r{3!}\b{\r{3!}-\r{2!}}}z^4&+\d\\\hline &&&&&+\d }\\ \begin{align} R&=\r{4!}\b{1-\r{5}}+\r{3!}\s{\r{2!}\b{\r{3}-1}}\\ &=\r{24}\b{\f45}+\r{12}\b{\f{-2}3}\\ &=\r{6}\b{\r{5}-\r{3}}\\ &=\f{-2}{6\times15}\\ &=-\r{45} \end{align}$$

RE60K
  • 18,045
  • @PedroTamaroff I tried but can't make up the long-division in latex, the bottom portion i can easily write, i need help, anyways will try my best to make it readablle. – RE60K Dec 25 '14 at 17:22
  • @PedroTamaroff done – RE60K Dec 25 '14 at 20:09
  • You really need to find a better way to code this. Doesn't \frac work for you? You don't need to use the long division symbol. – Pedro Dec 25 '14 at 22:28