Let $\mathbf{F}$ be a vector field defined on $\mathbb R^2 \setminus\{(0,0)\}$ by $$\mathbf {F } (x,y)=\frac{y}{x^2+y^2}i-\frac{x}{x^2+y^2}j $$ Let $\gamma,\alpha:[0,1]\to\mathbb R^2$ be defined by
$$\gamma (t)=(8\cos 2\pi t,17\sin 2\pi t)$$ and $$\alpha (t)=(26\cos 2\pi t,-10\sin 2\pi t)$$
If $$3\int_{\alpha} \mathbf{F\cdot dr} -4 \int_{\gamma} \mathbf{F\cdot dr}= 2m\pi,$$ then what is $m$?
How should I approach this question?
Progress
I see that the parametrization of ellipses are given already. For evaluating say first integral, I need to substitute given parametrization of ellipse in vector field. The parameter $t$ will vary from $ 0$ to $2\pi$. Am I correct?