2

If $a+b+c=0$,

Show that $\left[\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right]\left[\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c}\right]=9.$

I am struck with this problem but can't find a solution. Please help me.

Eric Stucky
  • 13,018

3 Answers3

1

If you expand the expression and factor you get $$\frac{(a^3+b^3+c^3-ab^2-a^2b-ac^2-a^2c-bc^2-b^2c+3abc)(b-c)(c-a)(a-b)}{abc (b-c)(c-a)(a-b)}$$ and if you then use $c=-a-b$ you get $$\frac{-9a^2b-9ab^2}{-a^2b-ab^2}=9$$ providing you have not divided by zero (so the $a,b,c$ must be distinct and non-zero as Suzu Hirose said in the comments).

Henry
  • 169,616
1

Assuming $a,b,c$ are non-zero & distinct

$$F=\dfrac{c}{a-b}\left[\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c}\right]$$

$$=1+\frac c{a-b}\cdot\frac{b^2-bc+ca-a^2}{ab}$$

$$=1+\frac c{a-b}\cdot\frac{(b-a)(b+a)-c(b-a)}{ab}$$

$$=1+\frac c{a-b}\cdot\frac{(b-a)(b+a-c)}{ab}$$

$$=1-\frac{c(b+a-c)}{ab}$$

As $b+a=-c,$

$$F=1-\frac{c(-c-c)}{ab}=1+2\cdot\frac{c^2}{ab}$$

Now using If $a,b,c \in R$ are distinct, then $-a^3-b^3-c^3+3abc \neq 0$., $a+b+c=0\implies a^3+b^3+c^3=3abc$

Now, divide both sides by $abc$

0

My solution (found by try-and-error):

a = -3
b =  1
c =  2

There are many other solutions.

Axel Kemper
  • 4,998
  • 1
  • 25
  • 26