What will be the value of this limit?
$$\lim_{n\to\infty}n\cdot\sin(2\pi\ e\ n!)$$
Any help on how to proceed?
What will be the value of this limit?
$$\lim_{n\to\infty}n\cdot\sin(2\pi\ e\ n!)$$
Any help on how to proceed?
Consider that, as $n$ increases, the distance of $e n!$ from the closest integer drops to zero, since: $$ n!e=n!\cdot\sum_{k=0}^{+\infty}\frac{1}{k!}=A+\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\ldots $$ where $A\in\mathbb{N}$. This gives: $$ \{n! e\} = \frac{1}{n+1}+O\left(\frac{1}{n^2}\right)$$ and: $$n\sin(2\pi n! e) = n\sin\left(2\pi\left(\frac{1}{n+1}+O\left(\frac{1}{n^2}\right)\right)\right),$$ so the limit is $2\pi$.
Expand $e=1+\frac11+\frac1{2!}+...+\frac1{n!}+...$