Consider the Banach space $\ell^\infty(\mathbb{N})$.
Define the group on the basis:
$$T(t)\chi_{\{n\}}:=e^{it/n!}\chi_{\{n\}}$$
and extended by linearity and continuity.
Then it is a group:
$$T(s+t)\left(\sum_{k\in\mathbb{N}}a_k\chi_{\{k\}}\right)=\sum_{k\in\mathbb{N}}e^{i(s+t)/k!}a_k\chi_{\{k\}}=T(t)T(s)\left(\sum_{k\in\mathbb{N}}a_k\chi_{\{k\}}\right)$$
$$T(0)\left(\sum_{k\in\mathbb{N}}a_k\chi_{\{k\}}\right)=\sum_{k\in\mathbb{N}}e^{i0/k!}a_k\chi_{\{k\}}=1\left(\sum_{k\in\mathbb{N}}a_k\chi_{\{k\}}\right)$$
of bounded even isometric operators:
$$\left\|T(t)\left(\sum_{k\in\mathbb{N}}a_k\chi_{\{k\}}\right)\right\|=\sup_{k\in\mathbb{N}}\left|e^{it/k!}\right|\cdot|a_k|=\sup_{k\in\mathbb{N}}1\cdot|a_k|=\left\|\sum_{k\in\mathbb{N}}a_k\chi_{\{k\}}\right\|$$
that is even uniformly continuous:
$$\left\|(T(h)-T(0))\left(\sum_{k\in\mathbb{N}}a_k\chi_{\{k\}}\right)\right\|=\sup_{k\in\mathbb{N}}\left|e^{ih/k!}-1\right|\cdot|a_k|\leq\left|e^{ih/1!}-1\right|\cdot\left\|\sum_{k\in\mathbb{N}}a_k\chi_{\{k\}}\right\|$$
So it satisfies all requirements.
Consider a finite Borel measure $\mu(\mathbb{R})<\infty$.
Regard the trajectory:
$$x_0:=\sum_{k\in\mathbb{N}}1\chi_{\{k\}}:\quad x(t):=T(t)x_0$$
Then its range is bounded but not precompact as:
$$\|x((2M)!\pi)-x((2N)!\pi)\|=\sup_{k\in\mathbb{N}}\left|e^{i(2M)!\pi/k!}-e^{i(2N)!\pi/k!}\right|\geq\left|e^{i(2M)!\pi/(2N)!}-e^{i(2N)!\pi/(2N)!}\right|\stackrel{M<N}{=}2$$
so that it can't be uniform limit of simple functions $s_n\nrightarrow x$.