Let $a\leq b \in \mathbb{R}$. Show that the sequence $a_1 = a, a_2=b$ and $a_{n+2}=\frac{a_{n+1}+a_n}{2}$ for $n\geq 1$ is Cauchy and find it's limit.
I did for $n>m$: $$|a_n-a_m|=\frac{1}{2}|(a_{n-1}+a_{n-2})-(a_{m-1}+a_{m-2})|$$ $$\leq |a_n-a_{n-1}|+|a_{n-1}-a_{n-2}|+...+|a_{m+2}-a_{m+1}|+|a_{m+1}-a_{m}|$$
But I have no idea what to do next