Let $S^n$ be the unit sphere in $\mathbf R^{n+1}$ and $\mathbf R P^n$ be the real projective space(see the definition of $\mathbf R P^n$ I am using in the References).
Define a relation $\sim$ on $S^n$ as: For all $\mathbf v,\mathbf w\in S^n$, $\mathbf v\sim \mathbf w$ if and only if $\mathbf v=-\mathbf w$.
I am trying to show that
$S^n/\sim \ \cong \ \mathbf R P^n$.
Let $\pi:\mathbf R^{n+1}\setminus\{\mathbf 0\}\to \mathbf R P^n$ be the canonical projection and $i:S^n\to \mathbf R^{n+1}\setminus \{\mathbf 0\}$ be the inclusion map.
I want to show that $\pi\circ i:S^n\to \mathbf R P^n$ is a quotient map.
It is clear that $\pi\circ i$ is surjective. We show that $\pi\circ i$ is continuous. Let $U$ be open in $\mathbf R P^n$. Then $\pi^{-1}(U)$ is open in $\mathbf R^{n+1}$. Noting that $i^{-1}(\pi^{-1}(U))=S^n\cap \pi^{-1}(U)$, we infer that $i^{-1}(\pi^{-1}(U))$ is open in $S^n$. Therefore $(\pi\circ i)^{-1}(U)$ is open in $S^n$ and the continuity of $\pi\circ i$ is established.
Now we need to show that if $(\pi\circ i)^{-1}(U)$ is open in $S^n$ for some subset $U$ of $\mathbf R P^n$, then $U$ is open in $\mathbf R P^n$.
I am stcuk here.
Can somebody help?
Thanks.
References:
Define a relation `$\equiv$' on $\mathbf R^{n+1}\setminus \{\mathbf 0\}$ as: for all $\mathbf v,\mathbf w\in \mathbf R^{n+1}\setminus\{\mathbf 0\}$, $\mathbf v\sim \mathbf w$ if and only if $\mathbf v=\lambda \mathbf w$ for some $\lambda\in \mathbf R^\setminus\{0\}$.
Then $\mathbf R P^n=\mathbf R^{n+1}/\equiv$.