Problem
Given a finite measure space $\Omega$ and a Banach space $E$.
One has strict inclusion: $$\mathcal{L}_\mathfrak{U}(\mu)\subsetneq\mathcal{L}_\mathfrak{R}(\mu):\quad\int_\mathfrak{U}F\mathrm{d}\mu=\int_\mathfrak{R}F\mathrm{d}\mu$$ How to prove this from scratch?
Uniform Integral
Predefine the simple integral: $$S=\sum_kb_k\chi(A_k):\quad\int_\mathfrak{S}S\mathrm{d}\mu:=\sum_k b_k\mu(A_k)$$
It is uniformly bounded: $$\|\int_\mathfrak{S}S\mathrm{d}\mu\|\leq\|S\|_\infty\mu(\Omega)$$ So define the uniform integral by: $$F=\lim_nS_n:\quad\int_\mathfrak{U}F\mathrm{d}\mu:=\lim_n\int_\mathfrak{S}S_n\mathrm{d}\mu$$ (More precisely, by the a.e. uniform closure!)
Riemann Integral
Define the Riemann integral by: $$\int_\mathfrak{R}F\mathrm{d}\mu:=\lim_\mathcal{P}\{\sum_{a\in A\in\mathcal{P}}F(a)\mu(A)\}_\mathcal{P}$$ Finite measurable partitions: $$\mathcal{P}\subseteq\Sigma:\quad\Omega=\bigsqcup_{A\in\mathcal{P}}A\quad(\#\mathcal{P}<\infty)$$ Order them by refinement: $$\mathcal{P}\leq\mathcal{P}':\iff\forall A'\in\mathcal{P}'\exists A\in\mathcal{P}:\quad A\supseteq A'$$ (That is the usual ordering.)