And now for something much more complicated:
Suppose $\lambda \in \mathbb{C}$.
The OP has dealt with purely real eigenvalues, so we may assume that
$\operatorname{im} \lambda \neq 0$. A real matrix has eigenvalues in conjugate pairs, so we need only deal with
$\operatorname{im} \lambda >0$. If the matrix $A$ has an eigenvalue $\lambda$, then the matrix $rA$ has an eigenvalue $r \lambda$, so we may assume that $|\lambda| = 1$, and so $\lambda = e^{i \theta}$ for some $\theta \in (0, \pi)$.
Let $P_n$ be the 'shift right' permutation matrix, that is, $P_ne_k = e_{k+1}$ for $k=1,...,n-1$ and $P_n e_n = e_1$. Since $P_n^k \neq I$ for $k=1,...,n-1$ and $P_n^n = I$, we see that the eigenvalues are the $n$th
roots of unity. Hence the eigenvalues of the permutation matrices $\{P_n\}$ are dense in the unit circle.
Note that $i$ is an eigenvalue of $P_4$, hence if $ \theta \in (0, { \pi \over 2}]$, we see that $e^{i \theta}$ is an eigenvalue of $(\cos \theta) I + (\sin \theta )P_4$.
We need to deal with the remaining case where $ \theta \in ({ \pi \over 2}, \pi)$.
In particular, we can find some $P_n$ with an eigenvalue $e^{i \omega}$, where ${ \pi \over 2} < \theta < \omega < \pi$. Then
$e^{i \theta}$ is an eigenvalue of $(\cos \theta - {\sin \theta \over \sin \omega} \cos \omega) I + {\sin \theta \over \sin \omega}P_n$ (since $\cos \theta \sin \omega - \sin \theta \cos \omega = \sin (\omega-\theta)$, then $\cos \theta - {\sin \theta \over \sin \omega} \cos \omega \ge 0$).
\frac 12 - i\frac{\sqrt 3}2 = 1 + \left(-\frac 12 - i\frac{\sqrt{3}}{2}\right) = 1 + \overline{\omega} $$ So, the matrix $I + J$ will have eigenvalue $-\omega$
– Ben Grossmann Nov 08 '14 at 10:30