1

I have trained a BERT model using ktrain (tensorflow wrapper) to recognize emotion on text, it works but it suffers from really slow inference. That makes my model not suitable for a production environment. I have done some research and it seems pruning could help.

Tensorflow provides some options for pruning e.g. tf.contrib.model_pruning .The problem is that it is not a widely used technique and I can not find a simple enough example that could help me to understand how to use it. Can someone help?

Only answers that include a coding solution will be considered for the bounty.

I provide my working code below for reference.

import pandas as pd
import numpy as np
import preprocessor as p
import emoji
import re
import ktrain
from ktrain import text
from unidecode import unidecode
import nltk

#text preprocessing class class TextPreprocessing: def init(self): p.set_options(p.OPT.MENTION, p.OPT.URL)

def _punctuation(self,val): 
    val = re.sub(r'[^\w\s]',' ',val)
    val = re.sub('_', ' ',val)
    return val

def _whitespace(self,val):
    return " ".join(val.split())

def _removenumbers(self,val):
    val = re.sub('[0-9]+', '', val)
    return val

def _remove_unicode(self, text):
    text = unidecode(text).encode("ascii")
    text = str(text, "ascii")
    return text  

def _split_to_sentences(self, body_text):
    sentences = re.split(r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s", body_text)
    return sentences

def _clean_text(self,val):
    val = val.lower()
    val = self._removenumbers(val)
    val = p.clean(val)
    val = ' '.join(self._punctuation(emoji.demojize(val)).split())
    val = self._remove_unicode(val)
    val = self._whitespace(val)
    return val

def text_preprocessor(self, body_text):

    body_text_df = pd.DataFrame({"body_text": body_text},index=[1])

    sentence_split_df = body_text_df.copy()

    sentence_split_df["body_text"] = sentence_split_df["body_text"].apply(
        self._split_to_sentences)

    lst_col = "body_text"
    sentence_split_df = pd.DataFrame(
        {
            col: np.repeat(
                sentence_split_df[col].values, sentence_split_df[lst_col].str.len(
                )
            )
            for col in sentence_split_df.columns.drop(lst_col)
        }
    ).assign(**{lst_col: np.concatenate(sentence_split_df[lst_col].values)})[
        sentence_split_df.columns
    ]

    body_text_df["body_text"] = body_text_df["body_text"].apply(self._clean_text)

    final_df = (
        pd.concat([sentence_split_df, body_text_df])
        .reset_index()
        .drop(columns=["index"])
    )

    return final_df["body_text"]

#instantiate data preprocessing object text1 = TextPreprocessing()

#import data data_train = pd.read_csv('data_train_v5.csv', encoding='utf8', engine='python') data_test = pd.read_csv('data_test_v5.csv', encoding='utf8', engine='python')

#clean the data data_train['Text'] = data_train['Text'].apply(text1._clean_text) data_test['Text'] = data_test['Text'].apply(text1._clean_text)

X_train = data_train.Text.tolist() X_test = data_test.Text.tolist()

y_train = data_train.Emotion.tolist() y_test = data_test.Emotion.tolist()

data = data_train.append(data_test, ignore_index=True)

class_names = ['joy','sadness','fear','anger','neutral']

encoding = { 'joy': 0, 'sadness': 1, 'fear': 2, 'anger': 3, 'neutral': 4 }

Integer values for each class

y_train = [encoding[x] for x in y_train] y_test = [encoding[x] for x in y_test]

trn, val, preproc = text.texts_from_array(x_train=X_train, y_train=y_train, x_test=X_test, y_test=y_test, class_names=class_names, preprocess_mode='distilbert', maxlen=350)

model = text.text_classifier('distilbert', train_data=trn, preproc=preproc)

learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=6)

predictor = ktrain.get_predictor(learner.model, preproc)

#save the model on a file for later use predictor.save("models/bert_model")

message = "This is a happy message"

#cleaning - takes 5ms to run clean = text1._clean_text(message)

#prediction - takes 325 ms to run predictor.predict_proba(clean) ```

0 Answers0