1

I'm following this tutorial to try Machine Learning AutoML Forecasting.

In the several parameters we can submit to the AutoML experiment, we have these ones:

  1. target_logs;
  2. target_rolling_window_size;

Can you explain with an example how the several forecasting algorithms works when these two parameters are set?

Thank you

automl_advanced_settings = {
    'time_column_name': time_column_name,
    'max_horizon': max_horizon,
    'target_lags': 12,
    'target_rolling_window_size': 4,
}
automl_config = AutoMLConfig(task='forecasting',                             
                             primary_metric='normalized_root_mean_squared_error',
                         experiment_timeout_hours=0.3,
                         training_data=train,
                         label_column_name=target_column_name,
                         compute_target=compute_target,
                         enable_early_stopping = True,
                         n_cross_validations=3,                             
                         verbosity=logging.INFO,
                        **automl_advanced_settings)

xcsob
  • 193
  • 2
  • 5

0 Answers0