I am training a CNN on some text data. The sentences are padded and embedded and fed to a CNN. The model architecture is:
model = Sequential()
model.add(Embedding(max_features, embedding_dims, input_length=maxlen))
model.add(Conv1D(128, 5, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(50, activation = 'relu'))
model.add(BatchNormalization())
model.add(Dense(50, activation = 'relu'))
model.add(BatchNormalization())
model.add(Dense(25, activation = 'relu'))
#model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
Any help would be appreciated.
