Proof that Double-SAT is NP
For a formula, given 2 valid solutions, we can verify that those 2 assignments satisfy the formula in linear time.
Proof that Double-SAT is NP-Hard
So we will reduce from SAT to Double-SAT (a.k.a. Twice-SAT).
Hidden variable
Just declaring one hidden variable is enough as a valid Double-SAT instance will have a solution with the hidden variable $true$ or $false$.
(hiddenVariable or not hiddenVariable)
You can put the hidden variable in a new clause if you want $(hiddenVariable \lor \lnot hiddenVariable)$.
Splitting a clause
Reduce one clause like this:
$$(a \lor \lnot b \lor \lnot c) => (a \lor \lnot b \lor \lnot c \lor hiddenVariable) \land (a \lor \lnot b \lor \lnot c \lor \lnot hiddenVariable)$$
Splitting all the clauses
Reduce all the clauses with the same hidden variable:
$$\left.
\begin{array}{11}
(a \lor \lnot b \lor \lnot c)\text{ }\land\\
...\\
(p \lor \lnot w \lor \lnot z)
\end{array}
\bigg\} =>
\right.
\bigg\{
\begin{array}{11}
(a \lor \lnot b \lor \lnot c \lor hiddenVariable)\text{ }\land\\
(a \lor \lnot b \lor \lnot c \lor \lnot hiddenVariable)\text{ }\land\\
...\\
(p \lor \lnot w \lor \lnot z \lor hiddenVariable)\text{ }\land\\
(p \lor \lnot w \lor \lnot z \lor \lnot hiddenVariable)
\end{array}$$
This is useless compared to the previous reduction.