I need to prove the above sequent using natural deduction. I did the first half already i.e. I proved $(p\rightarrow\neg q)\rightarrow \neg (p \wedge q)$, but I'm stuck on where to start for the reverse i.e. proving $\neg (p \wedge q) \rightarrow (p\rightarrow\neg q)$. I figured I would start by assuming $\neg (p \rightarrow \neg q)$ and then working towards a contradiction, but I'm still at a dead end. Can someone point me in the right direction? Thanks.
4 Answers
Can we use that $a \to b$ is same as $\neg a \lor b$? If yes then: $$\neg (p \wedge q) \rightarrow (p\rightarrow\neg q) $$ is same as $$(\neg p \lor \neg p) \rightarrow (\neg p \lor \neg q) $$
- 2,389
- 1
- 9
- 14
As a hint, note that $\neg p$ means $p \rightarrow \hbox{False}$. (In some logics, this is the definition of negation.)
Therefore $\neg (p \wedge q) \leftrightarrow (p \rightarrow \neg q)$ means: $$\left( \left(p \wedge q\right) \rightarrow \hbox{False} \right)\leftrightarrow \left(p \rightarrow q \rightarrow \hbox{False}\right)$$
This is just Currying.
- 24,523
- 3
- 48
- 99
One of the ways is this:
LHS
We already know that
(→¬) = (¬ + ¬)
RHS
By demorgan's law,
¬(∧) = (¬ + ¬)
Since LHS and RHS are same, so they are equivalent.
- 129
- 7
Here is a proof tree in natural deduction of the wanted implication, using $\Gamma = \{\neg(p\land q), p , q\}$:
$$\dfrac{ \dfrac{ \dfrac{ \dfrac{ \dfrac{ \dfrac{}{\Gamma\vdash p}\text{ax} \quad \dfrac{}{\Gamma\vdash q}\text{ax} }{\Gamma\vdash p\land q}\land_i \quad\dfrac{}{\Gamma\vdash \neg(p\land q)}\text{ax} }{\Gamma\vdash \bot}\neg_e }{\neg(p\land q), p\vdash \neg q}\neg_i }{\neg(p\land q)\vdash p\rightarrow \neg q}\rightarrow_i }{\vdash \neg(p\land q)\rightarrow (p \rightarrow \neg q)}\rightarrow_i$$
Sorry the layout is a bit ugly without appropriate LaTeX packages.
- 18,309
- 2
- 30
- 58