0

$A \rightarrow B C$

$C D \rightarrow E$

$B \rightarrow D$

$E \rightarrow A$

I have these Relations for R={A,B,C,D,E}

Now I have to calculate the closure $F^+$ and give the candidate keys

I came to these relations

$A \rightarrow A$

$A \rightarrow DC$

$A \rightarrow DE$

$A \rightarrow EE$

$A \rightarrow AA$

$A \rightarrow (DC)^{2^n}$

$A \rightarrow (DE)^{2^n}$

$A \rightarrow (EE)^{2^n}$

$A \rightarrow (AA)^{2^n}$

$C \rightarrow C$

$C \rightarrow A$

$C \rightarrow BC$

$C \rightarrow DC$

$C \rightarrow DE$

$C \rightarrow EE$

$C \rightarrow AA$

$C \rightarrow (DC)^{2^n}$

$C \rightarrow (DE)^{2^n}$

$C \rightarrow (EE)^{2^n}$

$C \rightarrow (AA)^{2^n}$

$D \rightarrow A$

$D \rightarrow BC$

$D \rightarrow DC$

$D \rightarrow DE$

$D \rightarrow EE$

$D \rightarrow AA$

$D \rightarrow (DC)^{2^n}$

$D \rightarrow (DE)^{2^n}$

$D \rightarrow (EE)^{2^n}$

$D \rightarrow (AA)^{2^n}$

$CD\rightarrow CD$

$CD\rightarrow A$

$CD\rightarrow BC$

$CD\rightarrow DC$

$CD\rightarrow DE$

$CD \rightarrow EE$

$CD \rightarrow AA$

$CD \rightarrow (DC)^{2^n}$

$CD \rightarrow (DE)^{2^n}$

$CD \rightarrow (EE)^{2^n}$

$CD \rightarrow (AA)^{2^n}$

$E\rightarrow E$

$E\rightarrow BC$

$E\rightarrow DC$

$E\rightarrow DE$

$E \rightarrow EE$

$E \rightarrow AA$

$E \rightarrow (DC)^{2^n}$

$E \rightarrow (DE)^{2^n}$

$E \rightarrow (EE)^{2^n}$

$E \rightarrow (AA)^{2^n}$

$B\rightarrow B$

$B\rightarrow E$

$B\rightarrow A$

$B\rightarrow BC$

$B \rightarrow DC$

$B \rightarrow DE$

$B \rightarrow EE$

$B \rightarrow AA$

$B \rightarrow (DC)^{2^n}$

$B \rightarrow (DE)^{2^n}$

$B \rightarrow (EE)^{2^n}$

$B \rightarrow (AA)^{2^n}$

AB

$AB\rightarrow AB$

$AB\rightarrow B$

$AB\rightarrow E$

$AB\rightarrow A$

$AB\rightarrow BC$

$AB \rightarrow DC$

$AB \rightarrow DE$

$AB \rightarrow EE$

$AB \rightarrow AA$

$AB \rightarrow (DC)^{2^n}$

$AB \rightarrow (DE)^{2^n}$

$AB \rightarrow (EE)^{2^n}$

$AB \rightarrow (AA)^{2^n}$

AC

$AC \rightarrow AC$

$AC \rightarrow C$

$AC \rightarrow A$

$AC \rightarrow BC$

$AC \rightarrow DC$

$AC \rightarrow DE$

$AC \rightarrow EE$

$AC \rightarrow AA$

$AC \rightarrow (DC)^{2^n}$

$AC \rightarrow (DE)^{2^n}$

$AC \rightarrow (EE)^{2^n}$

Could someone tell me if this is correct so far? I guess I have to give all these until ABCDE on the left side.

And how do I get the candidate keys then?

Rapiz
  • 53
  • 5

0 Answers0