This is an old question, but I just wanted to point out a more general solution if you didn't know about the Fibonacci sequence.
This system is linear, so it can be written as a first-order matrix equation:
$$\displaystyle \begin{bmatrix}F(n + 1) \\ F(n) \\ f(n + 1) \\ f(n) \end{bmatrix} = \begin{bmatrix}1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0\end{bmatrix} \begin{bmatrix} F(n) \\ F(n-1) \\ f(n) \\ f(n-1)
\end{bmatrix}$$
Note that we used the fact that $f(n) = f(n-1) + f(n-2)$ to fill out the top row.
That is:
$$\displaystyle \begin{bmatrix}F(n + 1) \\ F(n) \\ f(n + 1) \\ f(n) \end{bmatrix} = \begin{bmatrix}1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0\end{bmatrix}^{n} \begin{bmatrix} F(1) \\ F(0) \\ f(1) \\ f(0)
\end{bmatrix}$$
Denote:
$$\displaystyle A = \begin{bmatrix}1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0\end{bmatrix}$$
To determine powers of $A$, we factorise $A$ into the form:
$$\displaystyle A = \Sigma D \Sigma^{-1}$$
where $\Sigma$ is any invertible matrix, and $D$ has a convenient closed form for $D^n$. If you can do that, then:
$$\displaystyle A^n = \Sigma D^n \Sigma^{-1}$$
The obvious thing to try is eigendecomposition, which would make $D$ a diagonal matrix, so to calculate $D^n$, you just raise its diagonal entries to the power of $n$.
Unfortunately, this system has repeated eigenvalues, so we can't do that. It does, however, have a Jordan-Chevalley decomposition:
$$\displaystyle A = \Sigma J \Sigma^{-1}$$
where:
$$\displaystyle \Sigma = \begin{bmatrix}\operatorname{-}\left( \frac{\sqrt{5}\operatorname{-}1}{2}\right) & 1 & \frac{\sqrt{5}\operatorname{+}1}{2} & 1\\
1 & 0 & 1 & 0\\
0 & \frac{\sqrt{5}\operatorname{+}5}{2} & 0 & \frac{\sqrt{5}\operatorname{+}5}{\sqrt{5}\operatorname{+}3}\\
0 & \operatorname{-}\left( \frac{3 \sqrt{5}\operatorname{+}5}{2}\right) & 0 & \frac{3 \sqrt{5}\operatorname{-}5}{2}\end{bmatrix}$$
and:
$$J = \begin{bmatrix}\frac{1\operatorname{-}\sqrt{5}}{2} & 1 & 0 & 0\\
0 & \frac{1\operatorname{-}\sqrt{5}}{2} & 0 & 0\\
0 & 0 & \frac{\sqrt{5}\operatorname{+}1}{2} & 1\\
0 & 0 & 0 & \frac{\sqrt{5}\operatorname{+}1}{2}\end{bmatrix}$$
Since $J$ is in Jordan normal form, it has a reasonably convenient formula for its powers:
$$J^n = \begin{bmatrix}\left(\frac{1-\sqrt{5}}{2}\right)^n & n\left(\frac{1-\sqrt{5}}{2}\right)^{n-1} & 0 & 0\\
0 & \left(\frac{1-\sqrt{5}}{2}\right)^n & 0 & 0\\
0 & 0 & \left(\frac{1+\sqrt{5}}{2}\right)^n & n \left(\frac{1+\sqrt{5}}{2}\right)^{n-1}\\
0 & 0 & 0 & \left(\frac{1+\sqrt{5}}{2}\right)^n\end{bmatrix}$$
And so we can multiply all those matrices together to get a closed form:
$$\displaystyle F(n) = \frac{1}{5} \left( \frac{2}{\sqrt{5}} + n \frac{1 + \sqrt{5}}{2}\right) \left( \frac{1 + \sqrt{5}}{2}\right)^n
+ \frac{1}{5} \left( -\frac{2}{\sqrt{5}} + n \frac{1 - \sqrt{5}}{2}\right) \left( \frac{1 - \sqrt{5}}{2}\right)^n$$