Suppose one has an ideal block cipher
$E \: : \: \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^k \times \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^w \: \to \: \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^w \;\;\;$ and $\;\;\; D \: : \: \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^k \times \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^w \: \to \: \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^w$.
One can obviously follow the Triple-DES construction with that block cipher and keying option $n$, to get the block ciphers
$\operatorname{enc}_n \: : \: \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^{(4-n)\cdot k} \times \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^w \: \to \: \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^w \;\;\;$ and $\;\;\; \operatorname{dec}_n \: : \: \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^{(4-n)\cdot k} \times \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^w \: \to \: \{0,\hspace{-0.04 in}1\hspace{-0.03 in}\}^w$.
One can easily show that is takes $\:$$\Theta$$\left(2^k\right)\:$ queries to $E$ and $D$ to break the security of $E\hspace{.02 in}$.
Regardless of which keying option is used, $\:\operatorname{enc}_n\:$ will be at least that secure.
For $\:n\in \{\hspace{-0.02 in}1,\hspace{-0.02 in}2\hspace{-0.02 in}\}$, is it known that $\:\operatorname{enc}_n\:$ will be a PRP family against adversaries that can make significantly more than $2^k$ queries to $E$ and $D\hspace{.03 in}$?