-1

I have given n, e, c, and 2d+phi(n). any idea how to proceed to solve that RSA. for values click on this:- https://pastebin.com/mdeSdfzD

Mark
  • 1

1 Answers1

2
p = 179625470269984575211291664517722616039787182426068867084101295486932993749787129633737153741496747351573119936946306867775629661781307731728093871384501392452057213703678422306940017327268991666011108647323837661852433288372793079254503318017584711837671484712835436166606958277493346384859583473813750793903

q = 165951900395573838473861177483977329257584913855055564650331190368208599646122670409920222286702764849767512840736219293650470102124983099032047151432801085844142882059163396523057801419384753318562498454796480286799673413582017708953121180295255267080043853111452400359241673145348291220080289048917975182701

Hint: $(2d + \phi(n))\cdot e \equiv 2 \pmod{\phi(n)} \implies (2d + \phi(n))\cdot e - 2$ is a multiple of $\phi(n)$

user94293
  • 1,779
  • 13
  • 14