5

In this paper (A simple provably secure key exchange by Ding et al.) At page number 8, the author gives correctness of the technique as follows
enter image description here

then SK A = SKB with overwhelming probability i.e. if Alice and Bob run the protocol honestly, then they will share an identical key.

The above equation uses Lemma 1 which is as follows

enter image description here

How does the author deduce the above equation using Lemma 1. This equation gives correctness of the technique. Can anyone please help.

vivek
  • 217
  • 3
  • 13

2 Answers2

6

First: Lemma 1 says that $||\mathbf{x}|| \leq \alpha q \sqrt{n}$ with overwhelming probability if $\mathbf{x}$ is drawn from the discrete Gaussian since $\frac{1}{2^n}$ is negligible.

Next, from properties of absolute values, $|a + b| \leq |a| + |b|$. So, leaving the $2$ out for now and writing $\mathbf{s_A}^T\mathbf{e_B}$ as $\mathbf{s_A}\cdot\mathbf{e_B}$:

$|\mathbf{s_A}\cdot\mathbf{e_B} + e'_A + \mathbf{s_B}\cdot\mathbf{e_A} + e'_B| \leq |\mathbf{s_A}\cdot\mathbf{e_B}| + |e'_A| + |\mathbf{s_B}\cdot\mathbf{e_A}| + |e'_B|$.

Now, for Euclidean norms, Cauchy-Schwarz says $|\mathbf{a\cdot b}| \leq |\mathbf{a}|\cdot |\mathbf{b}|$, so we have, for example, $|\mathbf{s_A}\cdot\mathbf{e_B}| \leq |\mathbf{s_A}| \cdot |\mathbf{e_B}| \leq (\alpha q \sqrt{n})\cdot (\alpha q \sqrt{n})$, the last inequality coming from Lemma 1.

Let's tackle $e'_A$ and $e'_B$. I could sample a vector $\mathbf{e'}$ from $\mathcal{D_{\mathbb{Z^n},\alpha q}}$ and Lemma 1 would apply to it; if $e'_A$ is a member of $\mathbf{e'}$, it is certainly smaller than $||\mathbf{e'}||$:

$|e'_A| \leq ||\mathbf{e'_A}|| \leq \alpha q \sqrt{n} \leq (\alpha q \sqrt{n})\cdot (\alpha q \sqrt{n})$. Same for $e'_B$.

Thus I have four terms, all $\leq (\alpha q \sqrt{n})\cdot (\alpha q \sqrt{n})$. Multiply back in that $2$ and you have the result.

Edit

They do a similar procedure later on in Section 4, and explicitly write out norms, for future reference.

4

This lemma is used to conclude that a sample from $\mathcal{D}_{\mathbb{Z}^n,\alpha q}$ is (with overwhelming probability) less than or equal to $\alpha q \sqrt{n}$.

Now, because all values $\textbf{s}_{\textbf{A}},\textbf{s}_{\textbf{B}},\textbf{e}'_{\textbf{A}},\textbf{e}'_{\textbf{B}}$ are sampled from $\mathcal{D}_{\mathbb{Z}^n,\alpha q}$ , so $\textbf{s}_{\textbf{A}}^T\textbf{e}_{\textbf{B}}$ is less than or equal to $(\alpha q \sqrt{n})(\alpha q \sqrt{n})$. This bound is also true for each of other values $\textbf{e}_{\textbf{A}}^T\textbf{s}_{\textbf{B}}, \textbf{e}'_{\textbf{A}},\textbf{e}'_{\textbf{B}}$ and so the upper bound is determined.

Hamidreza
  • 1,049
  • 7
  • 19