Here's a variant that accepts both materialized and non-materialized sequences. It automatically determines whether or not it's monotonic, and if so, its direction (i.e. increasing or decreasing) and strictness. Inline comments are provided to help the reader. Similarly for test-cases provided at the end.
def isMonotonic(seq):
"""
seq.............: - A Python sequence, materialized or not.
Returns.........:
(True,0,True): - Mono Const, Strict: Seq empty or 1-item.
(True,0,False): - Mono Const, Not-Strict: All 2+ Seq items same.
(True,+1,True): - Mono Incr, Strict.
(True,+1,False): - Mono Incr, Not-Strict.
(True,-1,True): - Mono Decr, Strict.
(True,-1,False): - Mono Decr, Not-Strict.
(False,None,None) - Not Monotonic.
"""
items = iter(seq) # Ensure iterator (i.e. that next(...) works).
prev_value = next(items, None) # Fetch 1st item, or None if empty.
if prev_value == None: return (True,0,True) # seq was empty.
# ============================================================
# The next for/loop scans until it finds first value-change.
# ============================================================
# Ex: [3,3,3,78,...] --or- [-5,-5,-5,-102,...]
# ============================================================
# -- If that 'change-value' represents an Increase or Decrease,
# then we know to look for Monotonically Increasing or
# Decreasing, respectively.
# -- If no value-change is found end-to-end (e.g. [3,3,3,...3]),
# then it's Monotonically Constant, Non-Strict.
# -- Finally, if the sequence was exhausted above, which means
# it had exactly one-element, then it Monotonically Constant,
# Strict.
# ============================================================
isSequenceExhausted = True
curr_value = prev_value
for item in items:
isSequenceExhausted = False # Tiny inefficiency.
if item == prev_value: continue
curr_value = item
break
else:
return (True,0,True) if isSequenceExhausted else (True,0,False)
# ============================================================
# ============================================================
# If we tricked down to here, then none of the above
# checked-cases applied (i.e. didn't short-circuit and
# 'return'); so we continue with the final step of
# iterating through the remaining sequence items to
# determine Monotonicity, direction and strictness.
# ============================================================
strict = True
if curr_value > prev_value: # Scan for Increasing Monotonicity.
for item in items:
if item < curr_value: return (False,None,None)
if item == curr_value: strict = False # Tiny inefficiency.
curr_value = item
return (True,+1,strict)
else: # Scan for Decreasing Monotonicity.
for item in items:
if item > curr_value: return (False,None,None)
if item == curr_value: strict = False # Tiny inefficiency.
curr_value = item
return (True,-1,strict)
# ============================================================
# Test cases ...
assert isMonotonic([1,2,3,4]) == (True,+1,True)
assert isMonotonic([4,3,2,1]) == (True,-1,True)
assert isMonotonic([-1,-2,-3,-4]) == (True,-1,True)
assert isMonotonic([]) == (True,0,True)
assert isMonotonic([20]) == (True,0,True)
assert isMonotonic([-20]) == (True,0,True)
assert isMonotonic([1,1]) == (True,0,False)
assert isMonotonic([1,-1]) == (True,-1,True)
assert isMonotonic([1,-1,-1]) == (True,-1,False)
assert isMonotonic([1,3,3]) == (True,+1,False)
assert isMonotonic([1,2,1]) == (False,None,None)
assert isMonotonic([0,0,0,0]) == (True,0,False)
I suppose this could be more Pythonic, but it's tricky because it avoids creating intermediate collections (e.g. list, genexps, etc); as well as employs a fall/trickle-through and short-circuit approach to filter through the various cases: E.g. Edge-sequences (like empty or one-item sequences; or sequences with all identical items); Identifying increasing or decreasing monotonicity, strictness, and so on. I hope it helps.