Consider the standard 2-2 Bell scenario, with two parties each one choosing between two measurement settings, with each measurement setting leading to one of two possible measurement outcomes. Consider the space of possible corresponding behaviours, that is, conditional probability distributions $(p(ab|xy))_{a,b,x,y\in\{0,1\}}$.
As also discussed here, it is standard in this context to distinguish between different classes of behaviours. I'll mention in particular the set $\mathcal L$ of local behaviours, the set $\mathcal Q$ of quantum behaviours, and the set $\mathcal{NS}$ of no-signalling behaviours.
These are all clearly convex sets. In particular, $\mathcal L$ can be easily characterised via its vertices, which are bound to be the local deterministic behaviours of the form $\boldsymbol{e}_{a_0 a_1 b_0 b_1}\in\mathbb R^{16}$, which are ($16$) behaviours whose only 4 nonzero elements are $(\boldsymbol{e}_{a_0 a_1 b_0 b_1})_{a_x b_y,xy}=1$, for all $x,y\in\{0,1\}$. One way to further clarify what these vectors are is representing them as 4x4 matrices with columns representing measurement choices and rows measurement outcomes (sorted in the standard way as binary numbers). Explicitly, these are $$\tiny \boldsymbol{e}_{0000}=\begin{pmatrix}1&1&1&1\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix}, \quad \boldsymbol{e}_{0011}=\begin{pmatrix}0&0&0&0\\1&1&1&1\\0&0&0&0\\0&0&0&0\end{pmatrix}, \quad \boldsymbol{e}_{1100}=\begin{pmatrix}0&0&0&0\\0&0&0&0\\1&1&1&1\\0&0&0&0\end{pmatrix}, \quad \boldsymbol{e}_{1111}=\begin{pmatrix}0&0&0&0\\0&0&0&0\\0&0&0&0\\1&1&1&1\end{pmatrix}, \\\tiny \boldsymbol{e}_{0001}=\begin{pmatrix}1&0&1&0\\0&1&0&1\\0&0&0&0\\0&0&0&0\end{pmatrix}, \quad \boldsymbol{e}_{0010}=\begin{pmatrix}0&1&0&1\\1&0&1&0\\0&0&0&0\\0&0&0&0\end{pmatrix}, \quad \boldsymbol{e}_{0100}=\begin{pmatrix}1&1&0&0\\0&0&0&0\\0&0&1&1\\0&0&0&0\end{pmatrix}, \quad \boldsymbol{e}_{0101}=\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}, \\\tiny \boldsymbol{e}_{0110}=\begin{pmatrix}0&1&0&0\\1&0&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}, \quad \boldsymbol{e}_{0111}=\begin{pmatrix}0&0&0&0\\1&1&0&0\\0&0&0&0\\0&0&1&1\end{pmatrix}, \quad \boldsymbol{e}_{1000}=\begin{pmatrix}0&0&1&1\\0&0&0&0\\1&1&0&0\\0&0&0&0\end{pmatrix}, \quad \boldsymbol{e}_{1001}=\begin{pmatrix}0&0&1&0\\0&0&0&1\\1&0&0&0\\0&1&0&0\end{pmatrix}, \\\tiny \boldsymbol{e}_{1010}=\begin{pmatrix}0&0&0&1\\0&0&1&0\\0&1&0&0\\1&0&0&0\end{pmatrix}, \quad \boldsymbol{e}_{1011}=\begin{pmatrix}0&0&0&0\\0&0&1&1\\0&0&0&0\\1&1&0&0\end{pmatrix}, \quad \boldsymbol{e}_{1101}=\begin{pmatrix}0&0&0&0\\0&0&0&0\\1&0&1&0\\0&1&0&1\end{pmatrix}, \quad \boldsymbol{e}_{1110}=\begin{pmatrix}0&0&0&0\\0&0&0&0\\0&1&0&1\\1&0&1&0\end{pmatrix}. $$
For example, $\boldsymbol{e}_{0000}$ represents the situation where both outcomes are $0$ regardless of the measurement choices, whereas $\boldsymbol{e}_{0001}$ the one where Bob gets the outcome "1" whenever he uses the measurement setting "1", and any other outcome is "0". A recognisable feature is that these have a tensor product structure, representing the locality of the behaviours: $$(\boldsymbol{e}_{a_0 a_1 b_0 b_1})_{ab,xy} = (\boldsymbol{e}_{a_0 a_1})_{a,x}(\boldsymbol{e}_{b_0 b_1})_{b,y} = (\boldsymbol{e}_{a_0 a_1}\otimes \boldsymbol{e}_{b_0 b_1})_{ab,xy},$$ where $\boldsymbol{e}_{a_0 a_1}\in\mathbb R^2$ represents a possible behaviour representing a deterministic outcome assignment with $a_0$ observed whenever the measurement choice is $0$, and $a_1$ observed whenever the measurement choice is $1$. The set $\mathcal L$ can then be characterised as the convex hull of these 16 vectors.
Which brings me to my question: can a similarly simple characterisation be done for the no-signalling set, $\mathcal{NS}$? In other words, assuming $\mathcal{NS}$ can also be characterised as the convex hull of a finite number of vectors, what are these vertices?