For questions involving Liouville numbers.
An irrational number $x$ is a Liouville number if for all $n \in \mathbb{N}$, there exist $p,q \in \mathbb{N}$ with $q>1$ such that $0<|x-\frac{p}{q}|<\frac{1}{q^n}$.
For questions involving Liouville numbers.
An irrational number $x$ is a Liouville number if for all $n \in \mathbb{N}$, there exist $p,q \in \mathbb{N}$ with $q>1$ such that $0<|x-\frac{p}{q}|<\frac{1}{q^n}$.