The canonical bundles of these varieties both only have the zero section, so these sections cannot be used to prove the non-isomorphism of the varieties.
The anticanonical bundles $K^\ast=\Lambda^2T$ of these varieties however have spaces of global sections of different dimensions $h^0$ over the base field and prove that non-isomorphism:
$$h^0(\mathbb P^2, K^\ast_{\mathbb P^2})=h^0(\mathbb P^2,\mathcal O_{\mathbb P^2}(3))=10$$ whereas
$$h^0(\mathbb P^1\times \mathbb P^1, K^\ast_{{\mathbb P^1\times \mathbb P^1}})=h^0(\mathbb P^1\times \mathbb P^1,\mathcal O_{\mathbb P^1 }(2)\boxtimes \mathcal O_{\mathbb P^1 }(2))=9$$ (Whew, that was close: 10 and 9 !)
Edit: notation
Given the projections $p,q:\mathbb P^1\times \mathbb P^1\to \mathbb P^1$ of $\mathbb P^1\times \mathbb P^1$ onto its two factors, the tensor product $p^\ast\mathcal O_{\mathbb P^1}(a)\otimes_{\mathcal O_{\mathbb P^2}} q^\ast\mathcal O_{\mathbb P^1}(b)$ of the pull-backs $p^\ast\mathcal O_{\mathbb P^1}(a)$ and $q^\ast\mathcal O_{\mathbb P^1}(b)$ is denoted by $\mathcal O_{\mathbb P^1}(a)\boxtimes \mathcal O_{\mathbb P^1}(b)$ or simply by $\mathcal O_{\mathbb P^2}(a,b)$.
This convention is used in other answers too.