Trying to integrate $\int x^3 \sqrt{x^2+4 }dx$, I did the following
$u = \sqrt{x^2+4 }$ , $du = \dfrac{x}{\sqrt{x^2+4}} dx$
$dv=x^3$ , $v=\frac{1}{4} x^4$
$\int udv=uv- \int vdu$
$= \frac{1}{4} x^4\sqrt{x^2+4 } - \int \frac{1}{4} x^4\dfrac{x}{\sqrt{x^2+4}} dx$ ---> i'm stuck here
$\int \dfrac{1}{4 x^4} \dfrac{x}{\sqrt{x^2+4}} dx$ ---> i'm stuck here please help