I have been proposed this enigma, but can't solve it. So here it is:
$$\begin{align} e^{2 \pi i n} &= 1 \quad \forall n \in \mathbb{N} && (\times e) \tag{0} \\ e^{2 \pi i n + 1} &= e &&(^{1 + 2 \pi i n})\ \text{(raising both sides to the $2\pi in+1$ power)} \tag{1} \\ e^{(2 \pi i n + 1)(2 \pi i n + 1)} &= e^{(2 \pi i n + 1)} = e &&(\text{because of (1)}) \tag{2} \\ e^{1 + 4 \pi i n - 4 \pi^2 n^2} &= e && (\div e) \tag{3} \\ e^{4 \pi i n - 4 \pi^2 n^2} &= 1 &&(n \rightarrow +\infty) \tag{4} \\ 0 &= 1 &&(?) \tag{5} \end{align}$$
So the question is: where is the error?