Question : Let $n,a,b$ be positive integers. Are there infinitely many triplets $(n,a,b)$ which satisfy the following equality?$$n!=2^a-2^b$$ If Yes, then how can we prove that? If No, then how can we find every such triplet $(n,a,b)$?
The followings are what I've got :
$(1)$ We can get $(n,a,b)=(2,2,1),(3,3,1),(4,5,3),(5,7,3)$ easily.
$(2)$ $a$ can be represented by $n$ :
Let $2^{A_n}$ be the least number in the form of $2^i$ larger than $n!$, namely $$2^{A_n-1}\le n!\lt 2^{A_n}\iff A_n-1\le \log_2{n!}\lt A_n\iff A_n=\lfloor \log_2{n!}\rfloor+1$$ where $\lfloor x\rfloor $ represents the largest integer not greater than $x$.
Supposing $a\gt A_n$ gives us $$n!=2^a-2^b\ge 2^{A_n+1}-2^{A_n}=2^{A_n}\gt n!.$$ This is a contradiction. Hence, we have $a=A_n=\lfloor \log_2{n!}\rfloor+1$.
$(3)$ $b$ can be represented by $n$ :
We have $n!=2^b(2^{a-b}-1).$ Since $2^b$ is even and $2^{a-b}-1$ is odd, we know that $b$ is the number of $2$ as a prime factor of $n!$, namely $$b=\sum_{k=1}^{\lfloor \log_2 n\rfloor}\left\lfloor\frac{n}{2^k}\right\rfloor.$$
$(4)$ From $(2),(3)$, the question can be represented as the following :
Question : Are there infinitely many positive integer $n$ which satisfy the following equality? $$n!=2^{\lfloor \log_2{n!}\rfloor+1}-2^{\sum_{k=1}^{\lfloor \log_2 n\rfloor}\left\lfloor\frac{n}{2^k}\right\rfloor}$$ If Yes, then how can we prove that? If No, then how can we find every such $n$?
$(5)$ It seems that $n\ge6$ don't satisfy the equation in $(4)$ using computer.
Can anyone help?