Yes, the convolution of an integrable function $f$ with compact support, and a Schwartz class function $g$ belongs to the Schwartz space again.
Since all derivatives of Schwartz class functions belong to the Schwartz space, in particular are bounded, the convolution
$$(f\ast g)(x) = \int f(y)g(x-y)\,dy$$
is smooth, since the dominated convergence theorem allows differentiating under the integral arbitrarily often. (Since the difference quotients of $\partial^\alpha g$ converge uniformly on $\mathbb{R}$, and the support of $f$ is compact, one can get that result also without the dominated convergence theorem.)
So only the decay remains to be checked. Choose $K > 0$ such that $\operatorname{supp} f \subset [-K,K]$. Since $g\in \mathcal{S}(\mathbb{R})$, for every $\alpha,m\in\mathbb{N}$ there is a constant $C_{\alpha,m}$ such that
$$\lvert \partial^\alpha g(x)\rvert \leqslant \frac{C_{\alpha,m}}{(1+\lvert x\rvert)^m}$$
for all $x\in\mathbb{R}$.
Then for $\lvert x\rvert \geqslant 2K$ we have
$$\begin{align}
\lvert \partial^\alpha(f\ast g)(x)\rvert &= \left\lvert \int_{-K}^K f(y) \partial^\alpha g(x-y)\,dy \right\rvert\\
&\leqslant \int_{-K}^K \lvert f(y)\rvert\, \lvert \partial^\alpha g(x-y)\rvert\,dy\\
&\leqslant \int_{-K}^K \lvert f(y)\rvert \frac{C_{\alpha,m}}{(1+\lvert x-y\rvert)^m}\,dy\\
&\leqslant \int_{-K}^K \lvert f(y)\rvert \frac{C_{\alpha,m}}{\left(1 + \frac{\lvert x\rvert}{2}\right)^m}\,dy\\
&= \frac{2^mC_{\alpha,m}}{(2+\lvert x\rvert)^m}\int_{-K}^K\lvert f(y)\rvert\,dy\\
&\leqslant \frac{C'_{\alpha,m}}{(1+\lvert x\rvert)^m},
\end{align}$$
where $C'_{\alpha,m} = 2^m\lVert f\rVert_{L^1}C_{\alpha,m}$.
Since $(1+\lvert x\rvert)^m \partial^\alpha(f\ast g)(x)$ is continuous, it is bounded on the compact set $[-K,K]$, hence we have
$$(1+\lvert x\rvert)^m\lvert\partial^\alpha(f\ast g)(x)\rvert \leqslant \tilde{C}_{\alpha,m}$$
for all $x\in\mathbb{R}$ and some constant $\tilde{C}_{\alpha,m}$.
So $f\ast g$ is a smooth function such that $x^m\partial^\alpha(f\ast g)(x)$ is bounded for all $\alpha,m\in\mathbb{N}$, and that means precisely $f\ast g\in \mathcal{S}(\mathbb{R})$.
The generalisation to $\mathbb{R}^n$ is immediate.